login
A233203
Floor(n^n / 2^n).
2
1, 0, 1, 3, 16, 97, 729, 6433, 65536, 756680, 9765625, 139312339, 2176782336, 36972058910, 678223072849, 13363461010158, 281474976710656, 6311342330065435, 150094635296999121, 3773536025353076151, 100000000000000000000, 2785962590401641140642, 81402749386839761113321
OFFSET
0,4
FORMULA
a(n) = floor((n/2)^n).
EXAMPLE
a(5) = floor(5^5 / 2^5) = floor(3125 / 32) = 97.
MAPLE
A233203:=n->floor((n/2)^n); seq(A233203(n), n=0..30); # Wesley Ivan Hurt, Feb 26 2014
MATHEMATICA
Table[Floor[(n/2)^n], {n, 0, 30}] (* Wesley Ivan Hurt, Feb 26 2014 *)
PROG
(Python)
for n in range(33): print str(n**n >> n)+', ',
CROSSREFS
Cf. A000079, A000312, A178537 (n^n mod 2^n for odd n), A206344.
Bisection gives: A062206 (even part).
Sequence in context: A157016 A228792 A295810 * A074553 A303831 A193037
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Dec 05 2013
STATUS
approved