login
A233148
Number of n-edge-colorings of the cubical graph.
1
0, 0, 0, 24, 9216, 772680, 20864640, 281690640, 2408469504, 14923820016, 72840764160, 295839890280, 1038542714880, 3238606068984, 9155710252416, 23832538897440, 57817164625920, 131989025850720, 285757100158464, 590483650831416, 1170770734955520
OFFSET
0,4
COMMENTS
Also number of n-colorings of the cuboctahedral graph.
LINKS
Eric Weisstein's World of Mathematics, Cubical Graph
Eric Weisstein's World of Mathematics, Cuboctahedral Graph
Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
FORMULA
a(n) = n*(n-1)*(n-2)*(n^9 -21*n^8 +203*n^7 -1191*n^6 +4701*n^5 -13031*n^4 +25524*n^3 -34192*n^2 +28400*n -11072).
G.f.: -24*x^3*(29584*x^9 +491264*x^8 +2823089*x^7 +6622739*x^6 +6646049*x^5 +2837531*x^4 +480491*x^3 +27281*x^2 +371*x+ 1) / (x-1)^13.
MAPLE
a:= n-> n*(n-1)*(n-2) *(-11072 +(28400 +(-34192 +(25524 +(-13031
+(4701 +(-1191 +(203 +(-21+n)*n)*n)*n)*n)*n)*n)*n)*n):
seq(a(n), n=0..30);
CROSSREFS
Sequence in context: A167824 A266658 A065142 * A195681 A239166 A065236
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 04 2013
STATUS
approved