login
A233043
Prime(n), where n is such that (1+sum_{i=1..n} prime(i)^14) / n is an integer.
1
2, 3, 5, 7, 13, 19, 23, 37, 41, 89, 101, 107, 197, 223, 457, 997, 2423, 3361, 3907, 3989, 6701, 8861, 10007, 11731, 12473, 15569, 21031, 24071, 32693, 55009, 58427, 66293, 119267, 138967, 153191, 268531, 275581, 316961, 499853, 525313, 705259, 946873
OFFSET
1,1
COMMENTS
a(120) > 661876608760109. - Bruce Garner, Jun 02 2021
LINKS
Bruce Garner, Table of n, a(n) for n = 1..119 (first 101 terms from Robert Price)
EXAMPLE
a(5) = 13, because 13 is the 6th prime and the sum of the first 6 primes^14+1 = 4317810550670358 when divided by 6 equals 719635091778393 which is an integer.
MATHEMATICA
t = {}; sm = 1; Do[sm = sm + Prime[n]^14; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^14); s==0 \\ Charles R Greathouse IV, Nov 30 2013
CROSSREFS
Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Sequence in context: A124661 A319126 A134266 * A231099 A062252 A153800
KEYWORD
nonn
AUTHOR
Robert Price, Dec 03 2013
STATUS
approved