login
G.f.: (1-5*x+3*x^2+x^3)/(1-7*x+10*x^2+x^3-x^4).
0

%I #6 Mar 10 2020 21:53:36

%S 1,2,7,29,132,629,3061,15034,74131,366145,1809732,8947577,44243705,

%T 218786578,1081931151,5350356149,26458638660,130843764557,

%U 647051540301,3199814854026,15823803449275,78252267828921,386975076995972,1913678872087345,9463572870272049,46799498561863842,231434057435235031

%N G.f.: (1-5*x+3*x^2+x^3)/(1-7*x+10*x^2+x^3-x^4).

%D M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, DOI 10.1007/s00373-013-1357-1.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-10,-1,1).

%o (PARI) Vec((1-5*x+3*x^2+x^3)/(1-7*x+10*x^2+x^3-x^4) + O(x^35)) \\ _Jinyuan Wang_, Mar 10 2020

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Dec 05 2013