login
A232878
Twin prime pairs which sum to perfect squares.
3
17, 19, 71, 73, 881, 883, 1151, 1153, 2591, 2593, 3527, 3529, 4049, 4051, 15137, 15139, 20807, 20809, 34847, 34849, 46817, 46819, 69191, 69193, 83231, 83233, 103967, 103969, 112337, 112339, 149057, 149059, 176417, 176419, 179999, 180001, 206081, 206083
OFFSET
1,1
COMMENTS
All square roots of twin prime sums in this sequence (see A152786) are multiples of 6.
Digital roots of all pairs in this sequence are {8,1}.
Twin primes of the form 18n^2 +- 1. - Charles R Greathouse IV, Aug 26 2014
FORMULA
a(2*n) = a(2*n-1) + 2, a(2*n+1) = A069496(n).
EXAMPLE
17+19 = 36, square root of 36 = 6; 71+73 = 144, square root of 144 = 12.
MATHEMATICA
t = {}; Do[ps = {2 n^2 - 1, 2 n^2 + 1}; If[PrimeQ[ps[[1]]] && PrimeQ[ps[[2]]], AppendTo[t, ps]], {n, 1000}]; Flatten[t] (* T. D. Noe, Dec 03 2013 *)
PROG
(PARI) for(n=1, 1e3, if(isprime(t=18*n^2-1) && isprime(t+2), print1(t", "t+2", "))) \\ Charles R Greathouse IV, Aug 26 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary Croft, Dec 01 2013
STATUS
approved