login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232864 Number of permutations of n elements not cyclically containing the consecutive pattern 123. 2
1, 1, 2, 3, 12, 45, 234, 1323, 8856, 65529, 543510, 4937031, 49030596, 526930677, 6101871426, 75686176035, 1001517264432, 14079895613937, 209594037600558, 3293305758743679, 54470994630103260, 945988795762018029, 17211193919411902938, 327371367293394753627 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

R. Ehrenborg, Cyclically consecutive permutation avoidance, arXiv:1312.2051 [math.CO], 2013

FORMULA

a(n) = n! * Sum_{k=-oo..oo} (sqrt(3)/(2*Pi*(k+1/3)))^n for n >= 2.

a(n) = A080635(n-1)*n for n>0. - Alois P. Heinz, Dec 01 2013

EXAMPLE

For n=4 the a(4) = 12 comes from the 3 permutations 1324, 1423 and 1432; and by cyclically shifting we obtain 3 * 4 = 12 permutations.

MAPLE

b:= proc(u, o, t) option remember; `if`(u+o=0, 1,

      `if`(t<2, add(b(u+j-1, o-j, t+1), j=1..o), 0)+

      add(b(u-j, o+j-1, 1), j=1..u))

    end:

a:= n-> `if`(n=0, 1, n*b(0, n-1, 1)):

seq(a(n), n=0..25);  # Alois P. Heinz, Dec 01 2013

MATHEMATICA

b[u_, o_, t_] := b[u, o, t] = If[u+o==0, 1, If[t<2, Sum[b[u+j-1, o-j, t+1], {j, 1, o}], 0] + Sum[b[u-j, o+j-1, 1], {j, 1, u}]];

a[n_]:= If[n==0, 1, n*b[0, n-1, 1]];

Table[a[n], {n, 0, 25}] (* Jean-Fran├žois Alcover, Aug 14 2017, after Alois P. Heinz *)

CROSSREFS

Cf. A049774, A080635.

Sequence in context: A012306 A012312 A009243 * A002638 A027072 A083746

Adjacent sequences:  A232861 A232862 A232863 * A232865 A232866 A232867

KEYWORD

nonn

AUTHOR

Richard Ehrenborg, Dec 01 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 04:22 EST 2018. Contains 299389 sequences. (Running on oeis4.)