login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232822 Prime(n), where n is such that (sum_{i=1..n} prime(i)^8) / n is an integer. 2
2, 191, 12599173, 53029063 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(5) > 1066173339601.

The primes correspond to indices n = 1, 43, 824747, 3171671, ... = A125828. - M. F. Hasler, Dec 01 2013

LINKS

Table of n, a(n) for n=1..4.

OEIS Wiki, Sums of powers of primes divisibility sequences

FORMULA

a(n) = prime(A125828(n)). - M. F. Hasler, Dec 01 2013

EXAMPLE

a(2) = 191, because 191 is the 43rd prime and the sum of the first 43 primes^8 = 7287989395992721002 when divided by 43 equals 169488125488202814 which is an integer.

MATHEMATICA

t = {}; sm = 0; Do[sm = sm + Prime[n]^8; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)

PROG

(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^8); s==0 \\ Charles R Greathouse IV, Nov 30 2013

(PARI) S=n=0; forprime(p=1, , (S+=p^8)%n++||print1(p", ")) \\ - M. F. Hasler, Dec 01 2013

CROSSREFS

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.

Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248.

Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601.

Sequence in context: A142890 A201183 A103404 * A230228 A197249 A151709

Adjacent sequences:  A232819 A232820 A232821 * A232823 A232824 A232825

KEYWORD

nonn,more

AUTHOR

Robert Price, Nov 30 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 07:34 EDT 2020. Contains 337289 sequences. (Running on oeis4.)