login
A232768
Numbers n with the property that n^2+(n+1)^2 and n^2+(n+1)^2+(n+2)^2 are both prime.
1
2, 12, 14, 24, 34, 122, 154, 164, 272, 342, 464, 612, 674, 734, 784, 794, 854, 1174, 1262, 1274, 1364, 1392, 1524, 1554, 1664, 1682, 1844, 1854, 1862, 1892, 1924, 1942, 1994, 2232, 2294, 2354, 2442, 2592, 2802, 2884, 3124, 3164, 3292, 3394, 3544, 3594, 3632, 3724, 3892, 3904, 3922
OFFSET
1,1
COMMENTS
See A027862 for primes of the form x^2+(x+1)^2 = 2x^2+2x+1.
See A027864 for primes of the form x^2+(x+1)^2+(x+2)^2 = 3x^2+6x+5.
It is an open question whether either of these polynomials produces an infinite number of primes. This sequence lists the values of x that produce a prime in both polynomials. x must be congruent to 0 or 2 (mod 4) and all the generated primes are of the form 4k+1.
REFERENCES
James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 2005, page 266.
EXAMPLE
When x=14, 2x^2+2x+1=421 and 3x^2+6x+5=677. 14 is the third value of x for which both these polynomials produce a prime number, so a(3)=14.
MATHEMATICA
lst = {}; Do[If[And[PrimeQ[n^2 + (n + 1)^2], PrimeQ[n^2 + (n + 1)^2 + (n + 2)^2]], Print[n]; AppendTo[lst, n]], {n, 10000}]
Select[Range[2, 4000, 2], AllTrue[{(#^2+(#+1)^2), (#^2+(#+1)^2+(#+2)^2)}, PrimeQ]&] (* Harvey P. Dale, Jul 30 2023 *)
CROSSREFS
Cf. A027862, A027864. Equals n common to A027861 and A027863.
Sequence in context: A124163 A108976 A073598 * A022368 A076484 A259128
KEYWORD
nonn,easy
AUTHOR
Chris Fry, Nov 29 2013
STATUS
approved