login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232683 G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals (3*n)!/n!^3, which is De Bruijn's sequence S(3,n) (A006480), for n>=0. 9
1, 5, 27, 191, 1732, 18690, 226300, 2964284, 41082774, 593967362, 8873943769, 136095567381, 2132329828638, 34008171994644, 550591656446061, 9029248417359913, 149726007326186129, 2507013639225903129, 42337830100883644650, 720436676774318943294, 12342627498327879008169 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to: Sum_{k=0..n} [x^k] 1/(1-x)^n = (2*n)!/n!^2 = A000984(n).

Compare to: Sum_{k=0..n} [x^k] 1/(1-x)^(2*n) = (3*n)!/(n!*(2*n)!) = A005809(n).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..200

FORMULA

Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = (3*n)!/n!^3 = A000984(n)*A005809(n).

Given g.f. A(x), let G(x) = A(x*G(x)) then (G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = Sum_{n>=0} (3*n)!/n!^3 * x^n.

EXAMPLE

G.f.: A(x) = 1 + 5*x + 27*x^2 + 191*x^3 + 1732*x^4 + 18690*x^5 +...

ILLUSTRATION OF INITIAL TERMS.

If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:

A^0: [1], 0,    0,     0,      0,       0,        0,         0, ...;

A^1: [1,  5],  27,   191,   1732,   18690,   226300,   2964284, ...;

A^2: [1, 10,   79],  652,   6103,   65014,   769509,   9862452, ...;

A^3: [1, 15,  156,  1508], 15138,  164232,  1933920,  24464106, ...;

A^4: [1, 20,  258,  2884,  31487], 355104,  4228676,  53345608, ...;

A^5: [1, 25,  385,  4905,  58425,  693015], 8452145, 107398205, ...;

A^6: [1, 30,  537,  7696,  99852, 1253100, 15791920],203842404, ...;

A^7: [1, 35,  714, 11382, 160293, 2133369, 27940444, 368826722], ...; ...

then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals (3*n)!/n!^3 (A006480):

(3*0)!/0!^3 = 1 = 1;

(3*1)!/1!^3 = 1 +  5 = 6;

(3*2)!/2!^3 = 1 + 10 +  79 = 90;

(3*3)!/3!^3 = 1 + 15 + 156 + 1508 = 1680;

(3*4)!/4!^3 = 1 + 20 + 258 + 2884 + 31487 = 34650;

(3*5)!/5!^3 = 1 + 25 + 385 + 4905 + 58425 +  693015 = 756756;

(3*6)!/6!^3 = 1 + 30 + 537 + 7696 + 99852 + 1253100 + 15791920 = 17153136; ...

RELATED SERIES.

From a main diagonal in the above array we can derive the sequence:

[1/1, 10/2, 156/3, 2884/4, 58425/5, 1253100/6, 27940444/7, ...] =

[1, 5, 52, 721, 11685, 208850, 3991492, 80086117, 1667185489, ...];

from which we can form the series G(x) = A(x*G(x)):

G(x) = 1 + 5*x + 52*x^2 + 721*x^3 + 11685*x^4 + 208850*x^5 + 3991492*x^6 +...

such that

(G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = 1 + 6*x + 90*x^2 + 1680*x^3 + 34650*x^4 + 756756*x^5 + 17153136*x^6 +...+ A006480(n)*x^n +...

MATHEMATICA

a[0] = 1; a[n_] := Module[{S3, G}, S3 = Sum[((3*k)!/k!^3)*x^k, {k, 0, n + 1}] + x^3*O[x]^n; G = 1 + x*O[x]^n; For[i = 1, i <= n, i++, G = 1 + Integrate[(S3-1)*(G/x) - S3*G^2, x]]; SeriesCoefficient[ x/InverseSeries[ x*G, x], {x, 0, n}]];

Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Jan 15 2018, translated from 2nd PARI program *)

PROG

(PARI) /* By Definition: */

{a(n)=if(n==0, 1, ((3*n)!/n!^3 - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)}

for(n=0, 20, print1(a(n)*1!, ", "))

(PARI) /* Faster, using series reversion: */

{a(n)=local(S3=sum(k=0, n+1, (3*k)!/k!^3*x^k)+x^3*O(x^n), G=1+x*O(x^n));

for(i=1, n, G = 1 + intformal( (S3-1)*G/x - S3*G^2)); polcoeff(x/serreverse(x*G), n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A232606, A006480.

Sequence in context: A231091 A205774 A326094 * A240637 A023811 A126119

Adjacent sequences:  A232680 A232681 A232682 * A232684 A232685 A232686

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 27 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 21:31 EST 2020. Contains 338858 sequences. (Running on oeis4.)