login
a(n) = Sum_{k=0..n} k^p*q^k, where p=1, q=-2.
12

%I #35 Mar 31 2021 20:25:00

%S 0,-2,6,-18,46,-114,270,-626,1422,-3186,7054,-15474,33678,-72818,

%T 156558,-334962,713614,-1514610,3203982,-6757490,14214030,-29826162,

%U 62448526,-130489458,272163726,-566697074,1178133390,-2445745266,5070447502,-10498808946,21713445774

%N a(n) = Sum_{k=0..n} k^p*q^k, where p=1, q=-2.

%H Stanislav Sykora, <a href="/A232600/b232600.txt">Table of n, a(n) for n = 0..1000</a>

%H S. Sykora, <a href="http://dx.doi.org/10.3247/SL1Math06.002">Finite and Infinite Sums of the Power Series (k^p)(x^k)</a>, DOI 10.3247/SL1Math06.002, Section V.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-3,0,4).

%F a(n) = 2*( (3*n+1)*(-2)^n - 1 )/9.

%F abs(a(n)) = 2*A045883(n) = A140960(n).

%F From _Bruno Berselli_, Nov 28 2013: (Start)

%F G.f.: -2*x / ((1 - x)*(1 + 2*x)^2). [corrected by _Georg Fischer_, May 11 2019]

%F a(n) = -3*a(n-1) +4*a(n-3). (End)

%F From _G. C. Greubel_, Mar 31 2021: (Start)

%F E.g.f.: (2/9)*(-exp(x) + (1-6*x)*exp(-2*x)).

%F a(n) = 2*(-1)^n*A045883(n). (End)

%e a(3) = 0^1*2^0 - 1^1*2^1 + 2^1*2^2 - 3^1*2^3 = -18.

%p A232600:= n-> 2*((-2)^n*(3*n+1) -1)/9; seq(A232600(n), n=0..30); # _G. C. Greubel_, Mar 31 2021

%t Table[2((3n+1)(-2)^n -1)/9, {n, 0, 30}] (* _Bruno Berselli_, Nov 28 2013 *)

%o (PARI) a(n)=-((3*n+1)*(-2)^(n+1)+2)/9;

%o (Magma) [2*((-2)^n*(3*n+1) -1)/9: n in [0..30]]; // _G. C. Greubel_, Mar 31 2021

%o (Sage) [2*((-2)^n*(3*n+1) -1)/9 for n in (0..30)] # _G. C. Greubel_, Mar 31 2021

%Y Cf. A045883, A140960 (absolute values), A059841 (p=0, q=-1), A130472 (p=1 ,q=-1), A089594 (p=2, q=-1), A232599 (p=3, q=-1), A126646 (p=0, q=2), A036799 (p=1, q=2), A036800 (p=q=2), A036827 (p=3, q=2), A077925 (p=0, q=-2), A232601 (p=2, q=-2), A232602 (p=3, q=-2), A232603 (p=2, q=-1/2), A232604 (p=3, q=-1/2).

%Y Cf. A045883.

%K sign,easy

%O 0,2

%A _Stanislav Sykora_, Nov 27 2013