This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232598 T(n,k) = Stirling2(n,k) * OrderedBell(k) 3
 1, 1, 3, 1, 9, 13, 1, 21, 78, 75, 1, 45, 325, 750, 541, 1, 93, 1170, 4875, 8115, 4683, 1, 189, 3913, 26250, 75740, 98343, 47293, 1, 381, 12558, 127575, 568050, 1245678, 1324204, 545835, 1, 765, 39325, 582750, 3760491, 12391218, 21849366, 19650060, 7087261 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS T(n,k) is the number of preferential arrangements of the k-part partitions of the set {1...n}. 2*T(n,k) is the number of formulas in first order logic that have an n-place predicate and use k variables, but don't include a negator. 4*T(n,k) is the number of such formulas that may include an negator. The entries T(n,n) are A000670(n), i.e. the ordered Bell numbers. LINKS Tilman Piesk, First 100 rows, flattened Tilman Piesk, Preferential arrangements of set partitions (Wikiversity) FORMULA T(n,k) = A008277(n,k) * A000670(k). T(n,n) = A000670(n). T(n,2) = A068156(n-1). From Peter Bala, Nov 27 2013: (Start) E.g.f.: 1/( 2 - exp(x*(exp(t) - 1)) ) = 1 + x*t + (x + 3*x^2)*t^2/2! + (x + 9*x^2 + 13*x^3)*t^3/3! + .... Recurrence equation (for entries not on main diagonal): (n - k)*T(n,k) = C(n,1)*T(n-1,k) - C(n,2)*T(n-2,k) + C(n,3)*T(n-3,k) - ... (End) EXAMPLE Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level. Compare descriptions of A083355 and A233357. a(3,1) = 1: {1,2,3} a(3,2) = 9: {1,2}{3} {1,3}{2} {2,3}{1} {1,2}:{3}   {3}:{1,2} {1,3}:{2}   {2}:{1,3} {2,3}:{1}   {1}:{2,3} a(3,3) = 13: {1}{2}{3} {1}{2}:{3}   {3}:{1}{2} {1}{3}:{2}   {2}:{1}{3} {2}{3}:{1}   {1}:{2}{3} {1}:{2}:{3} {1}:{3}:{2} {2}:{1}:{3} {2}:{3}:{1} {3}:{1}:{2} {3}:{2}:{1} Triangle begins:      k = 1   2     3      4      5       6       7      8          sums n 1        1                                                            1 2        1   3                                                        4 3        1   9    13                                                 23 4        1  21    78     75                                         175 5        1  45   325    750    541                                 1662 6        1  93  1170   4875   8115    4683                        18937 7        1 189  3913  26250  75740   98343   47293               251729 8        1 381 12558 127575 568050 1245678 1324204 545835       3824282 CROSSREFS A008277 (Stirling2), A000670 (ordered Bell), A068156 (column k=2), A083355 (row sums: number of preferential arrangements), A233357 (number of preferential arrangements by number of levels). Sequence in context: A242499 A173020 A157383 * A174510 A141237 A318391 Adjacent sequences:  A232595 A232596 A232597 * A232599 A232600 A232601 KEYWORD nonn,tabl AUTHOR Tilman Piesk, Nov 26 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 00:25 EST 2019. Contains 329083 sequences. (Running on oeis4.)