login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232541 Multiplicative Smith numbers: Composite numbers n such that the product of nonzero digits of n = product of nonzero digits of prime factors of n. 1
4, 6, 8, 9, 95, 159, 195, 249, 326, 762, 973, 995, 998, 1057, 1086, 1111, 1189, 1236, 1255, 1337, 1338, 1383, 1389, 1395, 1419, 1509, 2139, 2248, 2623, 2679, 2737, 2928, 2949, 3029, 3065, 3202, 3344, 3345, 3419, 3432, 3437, 3464, 3706, 3945, 4344, 4502 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

They follow the same formula for Smith numbers, however, instead of addition, we have multiplication (only nonzero digits are included).

Trivially, prime numbers satisfy this property but are not included in the sequence.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

EXAMPLE

1236 is a member of this sequence because 1236 = 2*2*3*103 and 1*2*3*6 = 2*2*3*1*3 (zeros are not included).

998 is a member of this sequence because 998 = 2*499 and 9*9*8 = 2*4*9*9.

MATHEMATICA

f[n_] := Times @@ DeleteCases[IntegerDigits[n], 0]; pFactors[n_] := Module[{f = FactorInteger[n]}, Flatten[ConstantArray @@@ f]]; Select[Range[2, 10000], ! PrimeQ[#] && f[#] == Times @@ f /@ pFactors[#] &] (* T. D. Noe, Nov 28 2013 *)

PROG

(Python)

import sympy

from sympy import isprime

from sympy import factorint

def DigitProd(x):

..prod = 1

..for i in str(x):

....if i != '0':

......prod *= int(i)

..return prod

def f(x):

..lst = []

..for n in range(len(list(factorint(x)))):

....lst.append(str(list(factorint(x))[n])*list(factorint(x).values())[n])

..string = ''

..for i in lst:

....string += i

..prod = 1

..for a in string:

....if a != '0':

......prod *= int(a)

..if prod == DigitProd(x):

....return True

x = 1

while x < 10**3:

..if not isprime(x):

....if f(x):

......print(x)

..x += 1

(Sage)

def prodPrimeDig(x):

....F=factor(x)

....T=[item for sublist in [[y[0]]*y[1] for y in F] for item in sublist]

....return prod([prod(filter(lambda a: a!=0, h.digits(base=10))) for h in T])

n=3345 #Change n for more digits

[k for k in [1..n] if prod(filter(lambda a: a!=0, k.digits(base=10)))==prodPrimeDig(k) and not(is_prime(k))] # Tom Edgar, Nov 26 2013

CROSSREFS

Cf. A006753, A051801.

Sequence in context: A029581 A202262 A202266 * A076612 A182775 A046354

Adjacent sequences:  A232538 A232539 A232540 * A232542 A232543 A232544

KEYWORD

nonn,base,easy

AUTHOR

Derek Orr, Nov 25 2013

EXTENSIONS

Extended by T. D. Noe, Nov 28 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 05:09 EDT 2017. Contains 292502 sequences.