This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232439 Number T(n,k) of standard Young tableaux with n cells and major index k; triangle T(n,k), n>=0, 0<=k<=n*(n-1)/2, read by rows. 3
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 1, 1, 1, 1, 2, 4, 5, 7, 9, 9, 9, 9, 7, 5, 4, 2, 1, 1, 1, 1, 2, 4, 6, 9, 13, 16, 19, 22, 23, 23, 22, 19, 16, 13, 9, 6, 4, 2, 1, 1, 1, 1, 2, 4, 7, 10, 16, 22, 30, 37, 46, 52, 60, 62, 64, 62 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS Rows are symmetric. The row beginnings converge to A003293. T(n,k) is also the number of ballot sequences of length n with k the sum of positions of all ascents, see example. LINKS Joerg Arndt and Alois P. Heinz, Rows n = 0..40, flattened FindStat - Combinatorial Statistic Finder, The charge of the tableau, The inversion number of a standard Young tableau as defined by Haglund and Stevens, The cocharge of a standard tableau James Haglund, The q,t-Catalan Numbers and the Space of Diagonal Harmonics, AMS University Lecture Series, vol. 41, 2008. Wikipedia, Young tableau EXAMPLE For n=4 the 10 tableaux sorted by major index (sum of descent set) are: :[1 2 3 4]:[1 3 4]:[1 2] [1 2 4]:[1 4] [1 2 3]:[1 3] [1 3]:[1 2]:[1]: :         :[2]    :[3 4] [3]    :[2]   [4]    :[2]   [2 4]:[3]  :[2]: :         :       :             :[3]          :[4]        :[4]  :[3]: :         :       :             :             :           :     :[4]: : ---0--- : --1-- : -----2----- : -----3----- : ----4---- : -5- : 6 : Triangle T(n,k) begins: 1; 1; 1, 1; 1, 1, 1, 1; 1, 1, 2, 2, 2, 1,  1; 1, 1, 2, 3, 4, 4,  4,  3,  2,  1,  1; 1, 1, 2, 4, 5, 7,  9,  9,  9,  9,  7,  5,  4,  2,  1,  1; 1, 1, 2, 4, 6, 9, 13, 16, 19, 22, 23, 23, 22, 19, 16, 13, 9, 6, 4, 2, 1, 1; The 10 ballot sequences of length 4 are: ##   [ ballot seq] ascent positions  sum 01:  [ 1 1 1 1 ]   (none)            0 02:  [ 1 1 1 2 ]   3                 3 03:  [ 1 1 2 1 ]   2                 2 04:  [ 1 1 2 2 ]   2                 2 05:  [ 1 1 2 3 ]   2 + 3             5 06:  [ 1 2 1 1 ]   1                 1 07:  [ 1 2 1 2 ]   1 + 3             4 08:  [ 1 2 1 3 ]   1 + 3             4 09:  [ 1 2 3 1 ]   1 + 2             3 10:  [ 1 2 3 4 ]   1 + 2 + 3         6 The numbers 2, 3, and 4 appear twice, all others once, so the row four is  1, 1, 2, 2, 2, 1, 1. MAPLE b:= proc(l, i) option remember; `if`(l=[], 1, expand(add(       `if`(l[j]>`if`(j=1, 0, l[j-1]), `if`(j=1 and l[j]=1,        b(subsop(1=NULL, l), j-1), b(subsop(j=l[j]-1, l), j))*        x^`if`(j>i, add(t, t=l), 0), 0), j=1..nops(l))))     end: g:= (n, i, l)-> `if`(n=0 or i=1, b([1\$n, l[]], nops(l)+n),                  add(g(n-i*j, i-1, [i\$j, l[]]), j=0..n/i)): T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n\$2, [])): seq(T(n), n=0..10); # second Maple program (counting ballot sequences): b:= proc(n, v, l) option remember; local w; w:=add(t, t=l);       `if`(n<1, 1, expand(add(`if`(i=1 or l[i-1]>l[i],       `if`(v(p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 1, [1])): seq(T(n), n=0..10); MATHEMATICA b[l_List, i_] := b[l, i] = If[l == {}, 1, Expand[Sum[ If[l[[j]] > If[j == 1, 0, l[[j-1]]], If[j == 1 && l[[j]] == 1, b[ReplacePart[l, 1 -> Sequence[]], j-1], b[ReplacePart[l, j -> l[[j]]-1], j]]*x^If[j>i, Total[l], 0], 0], {j, 1, Length[l]}]]] ; g[n_, i_, l_List] := g[n, i, l] = If[n == 0 || i == 1, b[Join[Array[1&, n], l], Length[l]+n], Sum[g[n-i*j, i-1, Join[Array[i&, j], l]], {j, 0, n/i}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][g[n, n, {}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 14 2015, translated from Maple *) CROSSREFS Row sums give A000085. Cf. A000217, A003293, A225616, A247386. Sequence in context: A047971 A029432 A073426 * A309797 A199840 A126067 Adjacent sequences:  A232436 A232437 A232438 * A232440 A232441 A232442 KEYWORD nonn,tabf AUTHOR Joerg Arndt and Alois P. Heinz, Feb 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 14:37 EST 2019. Contains 329999 sequences. (Running on oeis4.)