login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232435 Number T(n,k) of compositions of n with exactly k (possibly overlapping) occurrences of the consecutive pattern 111; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows. 2
1, 1, 2, 3, 1, 7, 0, 1, 13, 2, 0, 1, 24, 5, 2, 0, 1, 46, 11, 4, 2, 0, 1, 89, 21, 11, 4, 2, 0, 1, 170, 45, 23, 11, 4, 2, 0, 1, 324, 99, 47, 23, 12, 4, 2, 0, 1, 618, 209, 102, 52, 23, 13, 4, 2, 0, 1, 1183, 427, 226, 112, 55, 24, 14, 4, 2, 0, 1, 2260, 883, 479 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Rows n = 0..150, flattened

EXAMPLE

T(4,0) = 7: [4], [3,1], [2,2], [1,3], [2,1,1], [1,2,1], [1,1,2].

T(7,1) = 11: [4,1,1,1], [2,2,2,1], [1,2,2,2], [1,1,1,4], [1,3,1,1,1], [2,2,1,1,1], [1,1,1,3,1], [2,1,1,1,2], [1,1,1,2,2], [1,1,1,2,1,1], [1,1,2,1,1,1].

T(7,2) = 4: [3,1,1,1,1], [1,1,1,1,3], [1,2,1,1,1,1], [1,1,1,1,2,1].

T(7,3) = 2: [2,1,1,1,1,1], [1,1,1,1,1,2].

T(7,5) = 1: [1,1,1,1,1,1,1].

Triangle T(n,k) begins:

:  0 :   1;

:  1 :   1;

:  2 :   2;

:  3 :   3,  1;

:  4 :   7,  0,  1;

:  5 :  13,  2,  0,  1;

:  6 :  24,  5,  2,  0,  1;

:  7 :  46, 11,  4,  2,  0, 1;

:  8 :  89, 21, 11,  4,  2, 0, 1;

:  9 : 170, 45, 23, 11,  4, 2, 0, 1;

: 10 : 324, 99, 47, 23, 12, 4, 2, 0, 1;

MAPLE

b:= proc(n, t) option remember; `if`(n=0, 1,

      expand(add(`if`(abs(t)<>j, b(n-j, j),

      `if`(t<0, x, 1)*b(n-j, -j)), j=1..n)))

    end:

T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):

seq(T(n), n=0..15);

MATHEMATICA

b[n_, t_] := b[n, t] = If[n==0, 1, Expand[Sum[If[Abs[t] != j, b[n-j, j], If[t<0, x, 1]*b[n-j, -j]], {j, 1, n}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-Fran├žois Alcover, Feb 08 2017, translated from Maple *)

CROSSREFS

Column k=0 gives: A128695.

Row sums give: A011782.

Sequence in context: A130405 A058372 A128264 * A114858 A193491 A263340

Adjacent sequences:  A232432 A232433 A232434 * A232436 A232437 A232438

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, Nov 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 23:39 EST 2019. Contains 329784 sequences. (Running on oeis4.)