%I #18 Nov 25 2013 02:59:12
%S 32768,4,2,4096,256,32,64,2048,16,512,1024,128,8,16384,8192,1
%N Michael Stifel's 4 X 4 multiplication magic square read by rows.
%C The square formed of natural numbers such that the products of the numbers of each row, each column and each diagonal are the same.
%D Jacques Sesiano, Les carrés magiques dans les pays islamiques, Lausanne: Presses polytechniques et universitaire romandes, 2004, p. 182.
%D Michael Stifel and Philipp Melanchton, Arithmetica integra, Nuremberg: Johannes Petreius, 1544, (29).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultiplicationMagicSquare.html">Multiplication Magic Square</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Michael_Stifel">Michael Stifel</a>
%H <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a>
%e The multiplication magic square is:
%e |-----|-----|-----|-----|
%e |32768| 4 | 2 | 4096|
%e | | | | |
%e |-----|-----|-----|-----|
%e | 256 | 32 | 64 | 2048|
%e | | | | |
%e |-----|-----|-----|-----|
%e | 16 | 512 | 1024| 128 |
%e | | | | |
%e |-----|-----|-----|-----|
%e | 8 |16384| 8192| 1 |
%e | | | | |
%e |-----|-----|-----|-----|
%e From _Philippe Deléham_, Nov 25 2013: (Start)
%e It is :
%e 2^15, 2^2, 2^1, 2^12
%e 2^8, 2^5, 2^6, 2^11
%e 2^4, 2^9, 2^10, 2^7
%e 2^3, 2^14, 2^13, 2^0, and the square:
%e |----|----|----|----|
%e | 15 | 2 | 1 | 12 |
%e | | | | |
%e |----|----|----|----|
%e | 8 | 5 | 6 | 11 |
%e | | | | |
%e |----|----|----|----|
%e | 4 | 9 | 10 | 7 |
%e | | | | |
%e |----|----|----|----|
%e | 3 | 14 | 13 | 0 |
%e | | | | |
%e |----|----|----|----|
%e is a magic square with constant = 30. (End)
%K nonn,fini,full,tabf
%O 1,1
%A _Arkadiusz Wesolowski_, Nov 23 2013