login
A232281
T(n,k)=Number of nXk 0..2 arrays with no element less than a strict majority of its horizontal, diagonal and antidiagonal neighbors
12
3, 3, 9, 9, 35, 27, 22, 199, 104, 81, 51, 1066, 1672, 341, 243, 121, 6019, 23055, 18117, 1189, 729, 292, 32301, 293426, 604133, 184115, 4040, 2187, 704, 174400, 3476318, 17145989, 14477600, 1774344, 13560, 6561, 1691, 944500, 43029161, 450287974
OFFSET
1,1
COMMENTS
Table starts
.....3......3..........9............22...............51.................121
.....9.....35........199..........1066.............6019...............32301
....27....104.......1672.........23055...........293426.............3476318
....81....341......18117........604133.........17145989...........450287974
...243...1189.....184115......14477600........906702319.........52334662011
...729...4040....1774344.....340593196......47260154104.......6001447087200
..2187..13560...17764558....8229274953....2527067273698.....706877889324298
..6561..45803..178471267..198816273957..135096346014359...83179007080796381
.19683.155131.1771400531.4771778176334.7180729990183315.9733054114073214077
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: [order 11] for n>12
k=3: [order 35] for n>36
Empirical for row n:
n=1: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) for n>6
n=2: [order 10]
n=3: [order 52] for n>53
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..1....2..0..0..0....0..2..0..0....2..2..1..1....0..1..0..2
..1..0..1..2....2..0..0..0....0..0..0..0....1..1..2..2....2..0..0..0
..0..0..0..0....0..2..1..2....0..0..0..0....1..1..1..1....0..2..0..0
CROSSREFS
Column 1 is A000244
Column 2 is A231645
Row 1 is A202882 for n>1
Sequence in context: A373322 A100066 A170832 * A223743 A117783 A121445
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 22 2013
STATUS
approved