login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232210 Let b_k=3...3 consist of k>=1 3's. Then a(n) is the smallest k such that the concatenation prime(n)b_k is prime, or a(n)=0 if there is no such prime. 10
1, 0, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 1, 2, 6, 2, 2, 1, 1, 2, 1, 4, 4, 23, 1, 2, 1, 6, 2, 2, 5, 1, 10, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 4, 2, 1, 1, 1, 2, 4, 1, 2, 5, 4, 2, 3, 1, 1, 5, 4, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 4, 2, 14, 2, 4, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Conjecture: for n>=3, a(n)>0.
Records are 1,14,23,50,252,4752,...
The corresponding primes are 2,13,131,653,883,1279,...
These primes beginning with the second one we call "stubborn primes".
Counter-conjecture: a(2889)=0. - Hans Havermann, Oct 15 2014
If a(n)=1, then the resulting primes are in A092993 and form A055782; if a(n)=2, then they form sequence 4133,4733,5333,7933,..., etc. - Vladimir Shevelev, Oct 16 2014
If a prime p divides Pb_k, then it also divides Pb_{k+m(p-1)} for all m>=0. This follows from Fermat's little theorem applied to b_x=(10^x-1)/3 with x=p-1. - M. F. Hasler, Oct 20 2014
LINKS
Hans Havermann, Table of n, a(n) for n = 1..2888 (first 200 terms from Michel Marcus)
Vladimir Shevelev, "Stubborn primes"
EXAMPLE
For n=1, start with prime(1)=2 and get already at the first step the prime 23. So a(1)=1.
For n=2, starting with prime(2)=3, one never gets a prime by appending further digits "3", therefore a(2)=0.
For n=3, n=4, n=5, one gets after the first step the primes 53, 73, 113, and therefore a(n)=1.
For n=6, start with prime(6)=13; one has to append 14 "3"s in order to get a new prime, so a(6)=14.
For n=2889, start with prime(2889) = 26293. (Do not mix up with prime(2899) = 26393...!) Appending 2k-1 or 6k-4 or 6k-2 or 18k-6 or 36k-18 or 180k-144 digits "3" yields a number divisible by 11 resp. 7 resp. 13 resp. 19 resp. 101 resp. 31. For 18k-12 and 36k (with k <> 1 (mod 5)) digits "3" there is no simple pattern and both yield sometimes large primes in the factorization, but (so far) always composite numbers 26293...3 (up to several thousand digits). - M. F. Hasler, Oct 16 2014
MATHEMATICA
f[n_] := Block[{k = 1, p = Prime@ n}, While[ !PrimeQ[p*10^k + (10^k - 1)/3], k++]; k]; f[2] = 0; Array[f, 100] (* Robert G. Wilson v, Apr 24 2015 *)
m3[n_]:=Module[{k=10n+3}, While[!PrimeQ[k], k=10k+3]; IntegerLength[k]-IntegerLength[ n]]; Join[{1, 0}, m3/@Prime[Range[3, 90]]] (* Harvey P. Dale, Feb 11 2018 *)
PROG
(PARI) a(n) = {if (n==2, return (0)); p = prime(n); k = 1; while (! isprime(p = p*10+3), k++); k; } \\ Michel Marcus, Sep 13 2014
CROSSREFS
Sequence in context: A002393 A185284 A262705 * A040199 A173747 A040200
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Sep 13 2014
EXTENSIONS
More terms from Peter J. C. Moses, Sep 13 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)