login
A232102
Primes p with same last two digits as k, where prime(k) = p.
3
1543, 3719, 4289, 5303, 5641, 6323, 7001, 7559, 7673, 8233, 8681, 9697, 9923, 12043, 12377, 12491, 12941, 14723, 14951, 15511, 15959, 17627, 17959, 18521, 21739, 21851, 21961, 22961, 24847, 25733, 26177, 28279, 29723, 30491, 31489, 32261, 34259, 34483
OFFSET
1,1
LINKS
FORMULA
a(n) = prime(A067838(n)).
EXAMPLE
243 and prime(243)=1543, both end with 43.
MATHEMATICA
sltdQ[k_]:=Module[{p=Prime[k]}, Mod[p, 100]==Mod[k, 100]]; Prime[#]&/@ Select[ Range[4000], sltdQ] (* Harvey P. Dale, Dec 26 2021 *)
PROG
(PARI)
cutdigit(a, p, q)=(a%10^q)\10^(p-1)
{for(n=1, 5000, p=prime(n); if(cutdigit(p, 1, 2)==cutdigit(n, 1, 2), print(p)))}
(Magma) [NthPrime(n): n in [1..5*10^3] | n mod 100 eq NthPrime(n) mod 100]; // Bruno Berselli, Nov 19 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antonio Roldán, Nov 18 2013
STATUS
approved