login
A232093
Position of 7^n among 7-smooth numbers (A002473).
1
1, 7, 30, 87, 202, 403, 726, 1214, 1911, 2874, 4158, 5832, 7968, 10640, 13933, 17937, 22747, 28464, 35195, 43054, 52162, 62644, 74630, 88257, 103671, 121020, 140462, 162155, 186267, 212973, 242453, 274894, 310483, 349420, 391909, 438161, 488388, 542814, 601667, 665181, 733594, 807154, 886109, 970720, 1061252, 1157972, 1261156, 1371084, 1488047, 1612341
OFFSET
0,2
COMMENTS
Note that all powers of 7 are terms in A002473.
Polynomial of fourth order is sufficient for very accurate approximation of a(n).
FORMULA
a(n) ~ c * n^4, where c = log(7)^3/(24*log(2)*log(3)*log(5)) = 0.250503020417439... - Vaclav Kotesovec and Amiram Eldar, Sep 22 2024
EXAMPLE
A002473(a(1)) = A002473(7) = 7.
A002473(a(2)) = A002473(30) = 49 = 7^2.
A002473(a(200)) = A002473(411921660) = 7^200.
MATHEMATICA
ss7 = {}; Do[m = 7^n; s = Sum[1 + Floor[Log[2, 7^(n - k)/5^i/3^j]], {k, 0, n}, {i, 0, Log[5, 7^(n - k)]}, {j, 0, Log[3, 7^(n - k)/5^i]}]; AppendTo[ss7, {n, s}], {n, 0, 50}]; ss7
CROSSREFS
Sequence in context: A030440 A256225 A339196 * A045889 A038739 A038798
KEYWORD
nonn
AUTHOR
Zak Seidov, Nov 18 2013
STATUS
approved