login
Number of nX6 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors
1

%I #4 Nov 17 2013 07:43:15

%S 21,184,5364,153562,4588174,136134243,4041385884,119990644449,

%T 3562337669985,105762437152368,3139973158165990,93222494384394215,

%U 2767677519549496896,82169423941902553632,2439523490954376368513

%N Number of nX6 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors

%C Column 6 of A232047

%H R. H. Hardin, <a href="/A232045/b232045.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 21*a(n-1) +314*a(n-2) -1045*a(n-3) -19776*a(n-4) +25231*a(n-5) +515946*a(n-6) -435697*a(n-7) -6637658*a(n-8) +7103608*a(n-9) +30185726*a(n-10) -21604276*a(n-11) -75687442*a(n-12) +24802802*a(n-13) +110712267*a(n-14) -9086579*a(n-15) -102117142*a(n-16) -7051224*a(n-17) +60433119*a(n-18) +10059839*a(n-19) -21510561*a(n-20) -4142240*a(n-21) +4134848*a(n-22) +562752*a(n-23) -331776*a(n-24) for n>26

%e Some solutions for n=3

%e ..0..0..0..1..0..0....1..1..1..1..1..1....1..0..0..0..1..0....0..0..0..0..1..1

%e ..0..0..0..0..0..1....0..0..0..1..0..0....0..0..0..0..0..0....1..0..0..1..0..0

%e ..0..1..0..0..0..0....0..0..1..0..0..1....0..1..0..0..0..0....0..0..0..0..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 17 2013