login
A231986
Decimal expansion of the solid angle (in steradians) subtended by a spherical square of one radian side.
8
9, 2, 7, 6, 8, 9, 4, 7, 5, 3, 2, 2, 3, 1, 3, 6, 4, 0, 7, 9, 5, 6, 1, 3, 2, 3, 8, 1, 4, 5, 9, 5, 4, 9, 1, 7, 6, 3, 0, 4, 0, 4, 0, 0, 6, 4, 2, 4, 5, 7, 4, 3, 4, 0, 8, 9, 9, 9, 8, 6, 9, 0, 4, 6, 6, 9, 1, 7, 4, 8, 6, 1, 8, 8, 5, 9, 1, 4, 5, 1, 8, 8, 9, 3, 9, 3, 7, 1, 3, 1, 0, 9, 9, 0, 3, 1, 9, 1, 2, 3, 5, 3, 9, 4, 4
OFFSET
0,1
COMMENTS
In spherical geometry, the solid angle (in steradians) covered by a rectangle with arc-length sides r and s (in radians) equals Omega = 4*arcsin(sin(s/2)*sin(r/2)). For this constant, r = s = 1.
Note: It is a common mistake to think that 1 radian squared gives one steradian! See also the discussion in A231984.
REFERENCES
G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry, Princeton University Press, 2012, ISBN 978-0691148922.
LINKS
Wikipedia, Solid angle, Section 3.3 (Pyramid).
Wikipedia, Steradian.
FORMULA
Equals 4*arcsin(sin(1/2)^2).
EXAMPLE
0.9276894753223136407956132381459549176304040064245743408999869...
MATHEMATICA
RealDigits[4 * ArcSin[Sin[1/2]^2], 10, 120][[1]] (* Amiram Eldar, May 16 2023 *)
CROSSREFS
Cf. A072097 (rad/deg), A019685 (deg/rad), A231981 (sr/deg^2), A231982 (deg^2/sr), A231984, A231987 (inverse problem).
Sequence in context: A172423 A104696 A086088 * A347329 A203126 A111506
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Nov 17 2013
STATUS
approved