The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231946 Partial sums of the third power of arithmetic derivative function A003415. 3
 0, 1, 2, 66, 67, 192, 193, 1921, 2137, 2480, 2481, 6577, 6578, 7307, 7819, 40587, 40588, 49849, 49850, 63674, 64674, 66871, 66872, 152056, 153056, 156431, 176114, 208882, 208883, 238674, 238675, 750675, 753419, 760278, 762006, 978006, 978007, 987268, 991364 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n)-> ~ 0.66*n^4 as n-> oo (note: 1^3+2^3+3^3+4^3+5^3 ...-> ~ 1/4*n^4; the asymptotic similarity between the sum of powers of natural numbers and the sum of powers of their derivatives stands also with sums in which the terms are higher powers, i.e. sum(i'^m, i=1..n)-> k*n^(m+1) as sum (i^m,i=1..n)-> h*n^(m+1) when n->oo, in other words the ratio of two sums is a constant). LINKS Robert Israel, Table of n, a(n) for n = 1..10000 E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull., vol. 4, no. 2, May 1961, pp. 117-122. FORMULA a(n)=sum((i')^3,i=1..n), where i'=A003415. EXAMPLE (1')^3+(2')^3+(3')^3+(4')^3+(5')^3=0+1+1+64+1=67->a(5)=67. MAPLE der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)): seq(add(der(i)^3, i=1..j), j=1..60); MATHEMATICA dn = 0; dn = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[]/f[])]]; Accumulate[Table[dn[n]^3, {n, 100}]] (* T. D. Noe, Nov 20 2013 *) CROSSREFS Cf. A003415, A190121, A231864. Sequence in context: A055765 A265996 A309169 * A333677 A098089 A304934 Adjacent sequences:  A231943 A231944 A231945 * A231947 A231948 A231949 KEYWORD nonn AUTHOR Giorgio Balzarotti, Nov 15 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 15:47 EST 2021. Contains 340439 sequences. (Running on oeis4.)