login
A231904
Number of nX3 0..2 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions)
1
3, 137, 1740, 22759, 297099, 3882566, 50739125, 663117735, 8666487550, 113265373685, 1480306533273, 19346672704504, 252848831479961, 3304575115257435, 43188717562121576, 564449365837980499
OFFSET
1,1
COMMENTS
Column 3 of A231908
LINKS
FORMULA
Empirical: a(n) = 21*a(n-1) -112*a(n-2) +73*a(n-3) +431*a(n-4) +780*a(n-5) -2741*a(n-6) -5903*a(n-7) +14367*a(n-8) -2036*a(n-9) -35426*a(n-10) +78448*a(n-11) -24360*a(n-12) -25944*a(n-13) +50016*a(n-14) -2848*a(n-15) -52992*a(n-16) +7808*a(n-17) for n>18
EXAMPLE
Some solutions for n=4
..0..0..1....0..1..1....0..0..1....0..1..1....0..1..1....0..0..0....0..0..2
..2..2..0....2..2..2....2..1..0....0..0..2....0..2..1....1..2..2....1..2..0
..0..2..2....0..1..1....2..2..0....2..2..1....2..0..0....1..1..0....2..0..0
..2..0..1....0..0..0....2..2..2....2..1..1....1..1..2....2..0..2....0..2..2
CROSSREFS
Sequence in context: A037120 A082923 A336202 * A049677 A030247 A139956
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 15 2013
STATUS
approved