login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231897 a(n) = smallest m such that wt(m^2) = n (where wt(i) = A000120(i)), or -1 if no such m exists. 4
0, 1, 3, 5, 13, 11, 21, 39, 45, 75, 155, 217, 331, 181, 627, 923, 1241, 2505, 3915, 5221, 6475, 11309, 15595, 19637, 31595, 44491, 69451, 113447, 185269, 244661, 357081, 453677, 1015143, 908091, 980853, 2960011, 4568757, 2965685, 5931189, 11862197, 20437147 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Conjecture: a(n) is never -1. (It seems likely that the arguments of Lindström (1997) could be modified to establish this conjecture.)

a(n) is the smallest m such that A159918(m) = n (or -1 if ...).

LINKS

Donovan Johnson, Table of n, a(n) for n = 0..70

Bernt Lindström, On the binary digits of a power, Journal of Number Theory, Volume 65, Issue 2, August 1997, Pages 321-324.

PROG

(Haskell)

a231897 n = head [x | x <- [1..], a159918 x == n]

-- Reinhard Zumkeller, Nov 20 2013

(PARI) a(n)=if(n, my(k); while(hammingweight(k++^2)!=n, ); k, 0) \\ Charles R Greathouse IV, Aug 06 2015

CROSSREFS

Cf. A000120, A159918, A230097, A231898, A214560.

Sequence in context: A263829 A028268 A171424 * A260416 A256222 A258976

Adjacent sequences:  A231894 A231895 A231896 * A231898 A231899 A231900

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 19 2013

EXTENSIONS

a(26-40) from Reinhard Zumkeller, Nov 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 22:17 EDT 2019. Contains 324200 sequences. (Running on oeis4.)