

A231897


a(n) = smallest m such that wt(m^2) = n (where wt(i) = A000120(i)), or 1 if no such m exists.


4



0, 1, 3, 5, 13, 11, 21, 39, 45, 75, 155, 217, 331, 181, 627, 923, 1241, 2505, 3915, 5221, 6475, 11309, 15595, 19637, 31595, 44491, 69451, 113447, 185269, 244661, 357081, 453677, 1015143, 908091, 980853, 2960011, 4568757, 2965685, 5931189, 11862197, 20437147
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Conjecture: a(n) is never 1. (It seems likely that the arguments of LindstrÃ¶m (1997) could be modified to establish this conjecture.)
a(n) is the smallest m such that A159918(m) = n (or 1 if ...).


LINKS

Donovan Johnson, Table of n, a(n) for n = 0..70
Bernt LindstrÃ¶m, On the binary digits of a power, Journal of Number Theory, Volume 65, Issue 2, August 1997, Pages 321324.


PROG

(Haskell)
a231897 n = head [x  x < [1..], a159918 x == n]
 Reinhard Zumkeller, Nov 20 2013
(PARI) a(n)=if(n, my(k); while(hammingweight(k++^2)!=n, ); k, 0) \\ Charles R Greathouse IV, Aug 06 2015


CROSSREFS

Cf. A000120, A159918, A230097, A231898, A214560.
Sequence in context: A263829 A028268 A171424 * A260416 A256222 A258976
Adjacent sequences: A231894 A231895 A231896 * A231898 A231899 A231900


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Nov 19 2013


EXTENSIONS

a(2640) from Reinhard Zumkeller, Nov 20 2013


STATUS

approved



