login
A231857
Number of 3Xn 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions)
1
9, 55, 656, 7339, 85288, 991167, 11529929, 134163686, 1561220559, 18167587282, 211412670503, 2460168784055, 28628514590530, 333144562652494, 3876739724171184, 45112880641621747, 524969986286019848
OFFSET
1,1
COMMENTS
Row 3 of A231855
LINKS
FORMULA
Empirical: a(n) = 15*a(n-1) -33*a(n-2) -96*a(n-3) +258*a(n-4) +412*a(n-5) -873*a(n-6) -1455*a(n-7) +1110*a(n-8) +4203*a(n-9) +2658*a(n-10) -10249*a(n-11) -12826*a(n-12) +15687*a(n-13) +27224*a(n-14) -12857*a(n-15) -37317*a(n-16) +9206*a(n-17) +17841*a(n-18) +107*a(n-19) +3350*a(n-20) -8989*a(n-21) +583*a(n-22) +8*a(n-23) +12093*a(n-24) -21445*a(n-25) +13211*a(n-26) -2506*a(n-27) +2401*a(n-28) -2357*a(n-29) +397*a(n-30) -8*a(n-31) +70*a(n-32) -32*a(n-33) -10*a(n-34) -4*a(n-35) for n>39
EXAMPLE
Some solutions for n=4
..0..0..2..2....0..2..2..0....0..2..1..1....0..2..2..1....0..0..0..2
..1..2..2..2....2..2..0..0....2..1..1..2....2..2..0..1....2..2..2..1
..0..1..0..0....1..0..0..0....0..0..0..1....2..0..2..2....1..0..0..0
CROSSREFS
Sequence in context: A362088 A281454 A174711 * A041148 A307844 A114026
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 14 2013
STATUS
approved