%I #8 May 21 2014 17:11:27
%S 0,10,281,3304,39155,445067,5257963,56668992,607124788,6426731531,
%T 68792548151
%N Count of the first 10^n primes containing at least one 6's digit.
%F a(n) ~ 10^n. - _Charles R Greathouse IV_, May 21 2014
%e a(2)=10 because there are 10 primes not greater than 541 (the 100th prime) that contain a 6's digit. Namely: 61, 67, 163, 167, 263, 269, 367, 461, 463, 467.
%t cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 6], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* _T. D. Noe_, Nov 13 2013 *)
%Y Cf. A231726-A231790, A231792-A231796, A091634-A091643, A231412, A228413-A228421.
%K more,nonn,base
%O 1,2
%A _Robert Price_, Nov 13 2013