login
A231779
Number of n X 2 0..2 arrays with no element having a strict majority of its horizontal and vertical neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).
2
1, 17, 74, 315, 1343, 5734, 24495, 104655, 447152, 1910521, 8162971, 34877432, 149018667, 636702899, 2720401314, 11623291351, 49662121961, 212188293616, 906603869753, 3873590586251, 16550452221246, 70714099135861
OFFSET
1,2
COMMENTS
Column 2 of A231785.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) -8*a(n-2) +2*a(n-3) +3*a(n-4) -a(n-5) for n>6.
Empirical g.f.: x*(1 + 11*x - 20*x^2 + 5*x^3 + 8*x^4 - 2*x^5) / (1 - 6*x + 8*x^2 - 2*x^3 - 3*x^4 + x^5). - Colin Barker, Mar 18 2018
EXAMPLE
Some solutions for n=7:
..0..2....0..1....0..1....0..0....0..0....0..1....0..0....0..2....0..0....0..1
..0..2....0..1....0..0....0..0....1..1....0..2....0..0....2..2....1..0....0..1
..2..2....2..1....1..2....2..2....2..1....2..2....1..2....2..2....2..2....0..1
..2..0....1..1....0..2....2..2....0..0....2..0....0..2....2..2....2..2....0..1
..1..0....1..1....2..2....0..1....0..0....2..1....0..2....0..0....0..0....2..1
..0..0....0..2....2..2....2..1....1..0....0..0....1..2....1..0....0..0....2..0
..2..2....0..2....0..2....2..1....1..2....1..0....1..2....2..0....2..2....1..0
CROSSREFS
Cf. A231785.
Sequence in context: A208399 A097223 A296113 * A063494 A146594 A202138
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 13 2013
STATUS
approved