login
A231626
Smallest sets of 5 consecutive deficient numbers in arithmetic progression. The initial deficient number is listed.
7
1, 7, 13, 31, 43, 49, 61, 73, 91, 115, 121, 127, 133, 145, 151, 163, 169, 181, 187, 211, 229, 235, 241, 247, 253, 265, 283, 289, 295, 313, 325, 331, 343, 347, 355, 373, 385, 403, 409, 421, 427, 433, 451, 469, 481, 505, 511, 523, 535, 553, 565, 583, 589, 595
OFFSET
1,2
LINKS
EXAMPLE
1, 2, 3, 4, 5 is the smallest set of 5 consecutive deficient numbers in arithmetic progression so 1 is in the list.
MATHEMATICA
DefQ[n_] := DivisorSigma[1, n] < 2 n; m = 2; z1 = 2; cd = 1; a = {}; Do[If[DefQ[n], If[n - z1 == cd, m = m + 1; If[m > 4, AppendTo[a, n - 4*cd]], m = 2; cd = n - z1]; z1 = n], {n, 3, 1000000}]; a
CROSSREFS
KEYWORD
nonn
AUTHOR
Shyam Sunder Gupta, Nov 11 2013
STATUS
approved