login
A231559
a(n) = floor( A000326(n)/2 ).
2
0, 0, 2, 6, 11, 17, 25, 35, 46, 58, 72, 88, 105, 123, 143, 165, 188, 212, 238, 266, 295, 325, 357, 391, 426, 462, 500, 540, 581, 623, 667, 713, 760, 808, 858, 910, 963, 1017, 1073, 1131, 1190, 1250, 1312, 1376, 1441, 1507, 1575, 1645, 1716, 1788, 1862, 1938
OFFSET
0,3
COMMENTS
First trisection of A011865.
FORMULA
G.f.: x^2*(2 + x^2)/((1 + x^2)*(1 - x)^3).
a(n) = ( n*(3*n-1) + i^(n*(n+1)) - 1 )/4, where i=sqrt(-1).
MATHEMATICA
Table[Floor[n (3 n - 1)/4], {n, 0, 60}]
CoefficientList[Series[x^2(2+x^2)/((1+x^2)(1-x)^3), {x, 0, 70}], x] (* or *) LinearRecurrence[{3, -4, 4, -3, 1}, {0, 0, 2, 6, 11}, 70] (* Harvey P. Dale, Jan 28 2022 *)
PROG
(Magma) [Floor(n*(3*n-1)/4): n in [0..60]];
CROSSREFS
Cf. pentagonal numbers: A000326.
Cf. A011848 for the triangular numbers: floor(A000217/2); A007590 for the squares: floor(A000290/2); A156859 for the hexagonal numbers: floor(A000384/2).
First differences: A047262.
Sequence in context: A046691 A098167 A081689 * A104813 A239698 A039745
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 11 2013
STATUS
approved