|
|
A231509
|
|
Number of n X 2 0..1 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.
|
|
1
|
|
|
2, 6, 14, 35, 90, 225, 569, 1441, 3640, 9208, 23293, 58912, 149023, 376961, 953533, 2412030, 6101388, 15433867, 39041066, 98757133, 249813189, 631920345, 1598487728, 4043489236, 10228295949, 25873208028, 65448135355, 165555752805
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 2*a(n-1) + a(n-2) + 3*a(n-3) - 4*a(n-4) - 2*a(n-5) - 4*a(n-6).
Empirical g.f.: x*(2 + 2*x - 5*x^3 - 4*x^4 - 4*x^5) / (1 - 2*x - x^2 - 3*x^3 + 4*x^4 + 2*x^5 + 4*x^6). - Colin Barker, Sep 29 2018
|
|
EXAMPLE
|
Some solutions for n=7:
..0..1....0..0....0..0....0..0....0..1....1..0....0..1....0..0....1..1....0..1
..0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..0
..0..1....0..0....0..1....0..0....0..0....0..0....0..0....0..0....0..0....0..0
..0..0....0..0....0..0....1..1....1..1....0..0....0..0....0..0....0..0....0..0
..0..0....0..0....1..0....0..0....0..0....0..1....0..0....1..1....1..0....0..0
..0..0....0..0....0..1....0..0....0..0....0..0....0..0....1..1....0..1....0..1
..0..1....0..1....0..0....0..1....1..1....0..1....1..1....1..1....0..0....0..0
|
|
CROSSREFS
|
Column 2 of A231515.
Sequence in context: A105635 A178320 A297187 * A318018 A025257 A283438
Adjacent sequences: A231506 A231507 A231508 * A231510 A231511 A231512
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Nov 09 2013
|
|
STATUS
|
approved
|
|
|
|