login
Number of (n+1)X(4+1) 0..3 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..3 introduced in row major order
1

%I #4 Nov 09 2013 06:48:39

%S 7,87,1598,33659,738459,16471575,370059818,8337875579,188061528227,

%T 4243377409271,95760169469137,2161131575055099,48773753581494548,

%U 1100764446612026879,24842987212570658866,560678221584425051945

%N Number of (n+1)X(4+1) 0..3 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..3 introduced in row major order

%C Column 4 of A231451

%H R. H. Hardin, <a href="/A231447/b231447.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 63*a(n-1) -1701*a(n-2) +27757*a(n-3) -316177*a(n-4) +2706931*a(n-5) -18182096*a(n-6) +98496668*a(n-7) -438418031*a(n-8) +1624362789*a(n-9) -5056301359*a(n-10) +13307779095*a(n-11) -29722949270*a(n-12) +56384627702*a(n-13) -90659508911*a(n-14) +122926074051*a(n-15) -139425609644*a(n-16) +130854255072*a(n-17) -100299209183*a(n-18) +61893300843*a(n-19) -30284604171*a(n-20) +11542469409*a(n-21) -3335456880*a(n-22) +692222436*a(n-23) -91434096*a(n-24) +5668704*a(n-25)

%e Some solutions for n=4

%e ..0..0..0..1..1....0..0..1..1..2....0..0..1..1..2....0..0..1..1..1

%e ..0..0..1..1..0....0..1..1..2..1....0..1..1..2..2....0..1..0..0..0

%e ..1..1..0..0..1....2..2..2..1..2....0..0..2..2..3....1..0..0..0..0

%e ..1..0..0..1..1....2..2..1..2..2....0..0..3..3..0....0..0..0..0..1

%e ..0..0..1..1..1....1..1..2..2..2....0..3..3..0..0....0..0..0..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 09 2013