login
A231441
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..3 introduced in row major order
8
1, 2, 2, 3, 4, 3, 6, 8, 8, 6, 11, 17, 21, 17, 11, 23, 45, 54, 54, 45, 23, 47, 104, 185, 182, 185, 104, 47, 102, 280, 561, 820, 820, 561, 280, 102, 221, 752, 1943, 3071, 4450, 3071, 1943, 752, 221, 492, 2076, 6756, 13458, 21472, 21472, 13458, 6756, 2076, 492, 1099, 5947
OFFSET
1,2
COMMENTS
Table starts
...1....2.....3.......6.......11.......23.......47......102.......221.......492
...2....4.....8......17.......45......104......280......752......2076......5947
...3....8....21......54......185......561.....1943.....6756.....24003.....88488
...6...17....54.....182......820.....3071....13458....59480....266481...1252868
..11...45...185.....820.....4450....21472...117959...653280...3702873..21843997
..23..104...561....3071....21472...133646...919000..6530487..46899990.351910410
..47..280..1943...13458...117959...919000..7859324.70278737.631712523
.102..752..6756...59480...653280..6530487.70278737
.221.2076.24003..266481..3702873.46899990
.492.5947.88488.1252868.21843997
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) +a(n-2) -7*a(n-3) +a(n-4) +3*a(n-5)
k=2: [order 19]
k=3: [order 24]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1..1..1....0..0..0..0..0..0....0..0..1..1..1..1....0..0..0..0..0..0
..0..0..0..1..1..1....0..0..0..0..0..0....0..0..1..1..1..1....0..0..0..0..0..0
..0..0..2..2..1..1....1..1..0..0..1..1....0..0..0..1..1..1....0..0..0..0..0..0
..2..2..2..2..2..2....1..1..1..1..1..1....0..0..0..1..1..1....1..1..1..1..1..1
..2..2..3..3..2..2....2..2..1..1..3..3....2..2..0..0..1..1....1..1..1..1..1..1
..3..3..3..3..3..3....2..2..2..3..3..3....2..2..2..0..0..0....0..0..1..1..0..0
..3..3..3..3..3..3....2..2..2..3..3..3....2..2..2..0..0..0....0..0..0..0..0..0
CROSSREFS
Column 1 is A199142(n+2)
Sequence in context: A343299 A375659 A231227 * A284199 A284165 A284113
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 09 2013
STATUS
approved