login
A231363
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..3 introduced in row major order
9
1, 2, 2, 4, 5, 4, 12, 16, 16, 12, 33, 51, 69, 51, 33, 102, 180, 314, 314, 180, 102, 329, 685, 1588, 2190, 1588, 685, 329, 1075, 2735, 8664, 15384, 15384, 8664, 2735, 1075, 3622, 11243, 48485, 115303, 151357, 115303, 48485, 11243, 3622, 12298, 47120, 278067
OFFSET
1,2
COMMENTS
Table starts
.....1......2.......4........12..........33...........102............329
.....2......5......16........51.........180...........685...........2735
.....4.....16......69.......314........1588..........8664..........48485
....12.....51.....314......2190.......15384........115303.........875548
....33....180....1588.....15384......151357.......1570792.......16473680
...102....685....8664....115303.....1570792......22223936......323672993
...329...2735...48485....875548....16473680.....323672993.....6484084119
..1075..11243..278067...6891052...177642195....4805725804...132637022443
..3622..47120.1614600..54253511..1920518549...71571627525..2720040353857
.12298.199945.9457286.432215971.20952334810.1071735830464.56182108648915
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) +5*a(n-2) -5*a(n-3) -24*a(n-4) -2*a(n-5) +15*a(n-6) +9*a(n-7)
k=2: [order 13] for n>14
k=3: [order 29] for n>31
k=4: [order 79] for n>83
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..2..2....0..0..1..2..2....0..0..1..1..1....0..0..1..1..2
..0..1..1..2..2....0..1..1..2..3....0..0..1..1..1....0..1..1..2..2
..1..1..3..3..2....1..1..2..3..3....0..1..1..1..1....1..1..1..2..3
..3..3..3..3..2....1..2..2..3..3....1..1..1..1..2....1..1..2..3..3
..3..3..3..2..2....2..2..2..3..3....1..1..1..2..2....1..2..2..3..3
CROSSREFS
Sequence in context: A266249 A276299 A231302 * A225840 A361645 A319409
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 08 2013
STATUS
approved