login
A231330
Table of distinct terms in rows of triangle A230871, in natural order.
5
0, 1, 1, 3, 2, 4, 8, 3, 5, 7, 9, 11, 21, 5, 7, 11, 13, 17, 19, 23, 25, 29, 55, 8, 10, 12, 16, 18, 22, 24, 26, 30, 32, 34, 36, 44, 46, 50, 60, 64, 66, 76, 144, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 61, 65, 67, 71, 73, 77, 79, 83, 89, 95
OFFSET
0,4
COMMENTS
A230872 gives the union of all rows;
A231335(n) = number of Fibonacci numbers in row n.
LINKS
EXAMPLE
Initial rows:
. 0: 0;
. 1: 1;
. 2: 1,3;
. 3: 2,4,8 from a230871(3,*) = [2,2,4,8];
. 4: 3,5,7,9,11,21 from a230871(4,*) = [3,5,3,5,7,9,11,21];
. 5: 5,7,11,13,17,19,23,25,29,55;
. 6: 8,10,12,16,18,22,24,26,30,32,34,36,44,46,50,60,64,66,76,144.
PROG
(Haskell)
import Data.List (sort, nub)
a231330 n k = a231330_tabf !! n !! k
a231330_row n = a231330_tabf !! n
a231330_tabf = map (sort . nub) a230871_tabf
CROSSREFS
Cf. A231331 (row lengths), A000045 (left edge), A001906 (right edge).
Sequence in context: A084695 A317704 A201422 * A254051 A082228 A114650
KEYWORD
nonn,look,tabf
AUTHOR
Reinhard Zumkeller, Nov 07 2013
STATUS
approved