This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231305 Recurrence a(n) = a(n-2) + n^M for M=6, starting with a(0)=0, a(1)=1. 7
 0, 1, 64, 730, 4160, 16355, 50816, 134004, 312960, 665445, 1312960, 2437006, 4298944, 7263815, 11828480, 18654440, 28605696, 42792009, 62617920, 89837890, 126617920, 175604011, 239997824, 323639900, 431100800, 567780525, 740016576, 955201014, 1221906880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Stanislav Sykora, Table of n, a(n) for n = 0..9999 Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1). FORMULA a(n) = Sum_{k=0..floor(n/2)}(n-2k)^6. From Colin Barker, Dec 22 2015: (Start) a(n) = 1/42*n*(3*n^6+21*n^5+42*n^4-56*n^2+32). G.f.: x*(1+56*x+246*x^2+56*x^3+x^4) / (1-x)^8. (End) EXAMPLE a(5) = 5^6 + 3^6 + 1^6 = 16355. MAPLE map(op, ListTools:-PartialSums([seq([(2*i)^6, (2*i+1)^6], i=0..50)])); # Robert Israel, Dec 22 2015 MATHEMATICA Table[SeriesCoefficient[x (1 + 56 x + 246 x^2 + 56 x^3 + x^4)/(1 - x)^8, {x, 0, n}], {n, 0, 28}] (* Michael De Vlieger, Dec 22 2015 *) PROG (PARI) nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^6); print(a); (PARI) concat(0, Vec(x*(1+56*x+246*x^2+56*x^3+x^4)/(1-x)^8 + O(x^50))) \\ Colin Barker, Dec 22 2015 CROSSREFS Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10). Sequence in context: A092758 A030516 A056573 * A108538 A195593 A221753 Adjacent sequences:  A231302 A231303 A231304 * A231306 A231307 A231308 KEYWORD nonn,easy AUTHOR Stanislav Sykora, Nov 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 12:58 EDT 2018. Contains 313917 sequences. (Running on oeis4.)