%I #32 Nov 21 2019 00:10:15
%S 0,1,32,244,1056,3369,8832,20176,41600,79225,141600,240276,390432,
%T 611569,928256,1370944,1976832,2790801,3866400,5266900,7066400,
%U 9351001,12220032,15787344,20182656,25552969,32064032,39901876,49274400,60413025,73574400,89042176
%N Recurrence a(n) = a(n-2) + n^M for M=5, starting with a(0)=0, a(1)=1.
%C See A231303.
%H Stanislav Sykora, <a href="/A231304/b231304.txt">Table of n, a(n) for n = 0..9999</a>
%H Stanislav Sýkora, <a href="http://www.ebyte.it/stan/blog12to14.html#14Dec31">Magnetic Resonance on OEIS</a>, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (6,-14,14,0,-14,14,-6,1).
%F a(n) = Sum_{k=0..floor(n/2)} (n-2k)^5.
%F a(0)=0, a(1)=1, a(2)=32, a(3)=244, a(4)=1056, a(5)=3369, a(6)=8832, a(7)=20176, a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8). - _Harvey P. Dale_, Jul 22 2014
%F From _Colin Barker_, Dec 22 2015: (Start)
%F a(n) = (1/24)*(2*n^6 + 12*n^5 + 20*n^4 - 16*n^2 - 3*(-1)^n + 3).
%F G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4) / ((1-x)^7*(1+x)).
%F (End)
%e a(4) = 4^5 + 2^5 = 1056; a(5) = 5^5 + 3^5 + 1^5 = 3369.
%t RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+n^5},a,{n,30}] (* or *) LinearRecurrence[{6,-14,14,0,-14,14,-6,1},{0,1,32,244,1056,3369,8832,20176},40] (* _Harvey P. Dale_, Jul 22 2014 *)
%o (PARI) nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^5); print(a);
%o (PARI) concat(0, Vec(x*(1+26*x+66*x^2+26*x^3+x^4)/((1-x)^7*(1+x)) + O(x^50))) \\ _Colin Barker_, Dec 22 2015
%Y Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).
%K nonn,easy
%O 0,3
%A _Stanislav Sykora_, Nov 07 2013