login
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..2 introduced in row major order
9

%I #4 Nov 07 2013 05:17:13

%S 1,2,2,4,5,4,12,16,16,12,32,51,69,51,32,92,174,301,301,174,92,264,617,

%T 1414,1934,1414,617,264,756,2223,6850,12150,12150,6850,2223,756,2176,

%U 8051,33316,78028,103456,78028,33316,8051,2176,6252,29220,162796,503290

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Table starts

%C ....1......2.......4........12.........32...........92...........264

%C ....2......5......16........51........174..........617..........2223

%C ....4.....16......69.......301.......1414.........6850.........33316

%C ...12.....51.....301......1934......12150........78028........503290

%C ...32....174....1414.....12150.....103456.......894318.......7795257

%C ...92....617....6850.....78028.....894318.....10359556.....122696560

%C ..264...2223...33316....503290....7795257....122696560....1965819189

%C ..756...8051..162796...3300161...68850102...1465475351...31830949407

%C .2176..29220..797293..21613114..608914401..17557687250..517419330480

%C .6252.106109.3906788.142211597.5409898598.211100299699.8451367403478

%H R. H. Hardin, <a href="/A231302/b231302.txt">Table of n, a(n) for n = 1..180</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-4)

%F k=2: [order 8] for n>9

%F k=3: [order 14] for n>16

%F k=4: [order 44] for n>48

%e Some solutions for n=4 k=4

%e ..0..1..1..1..1....0..0..0..0..0....0..0..1..1..1....0..1..1..1..1

%e ..0..1..1..1..0....0..1..1..0..0....0..0..1..1..1....0..1..1..1..0

%e ..0..0..0..0..0....1..1..1..0..0....0..0..1..1..1....0..1..1..0..0

%e ..0..0..0..1..1....1..1..2..2..2....0..0..0..1..1....0..0..0..0..0

%e ..0..0..1..1..1....1..2..2..2..2....0..0..0..1..1....0..0..0..0..0

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Nov 07 2013