%I #10 Sep 28 2018 10:56:04
%S 2,5,16,51,174,617,2223,8051,29220,106109,385468,1400401,5088037,
%T 18486201,67166528,244037407,886670130,3221565113,11705027203,
%U 42528259303,154519400012,561420537017,2039828499536,7411378111905
%N Number of (n+1) X (2+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..2 introduced in row major order.
%H R. H. Hardin, <a href="/A231296/b231296.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 16*a(n-3) + 16*a(n-4) - 6*a(n-5) - 3*a(n-6) + 4*a(n-8) for n>9.
%F Empirical g.f.: x*(2 - 3*x - 8*x^2 + 9*x^3 - 14*x^4 + 7*x^5 + 3*x^6 + 4*x^7 + 4*x^8) / ((1 - x)*(1 - x + x^2)*(1 - 2*x - 8*x^2 + 5*x^3 + 8*x^4 + 4*x^5)). - _Colin Barker_, Sep 28 2018
%e Some solutions for n=4:
%e ..0..1..1....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0....0..1..1
%e ..0..1..1....0..0..1....0..0..1....0..0..1....0..1..1....1..1..0....0..1..1
%e ..0..0..0....1..1..1....1..1..1....1..1..1....1..1..1....1..1..0....0..0..0
%e ..0..0..1....1..2..2....1..1..2....1..1..1....1..0..0....1..1..0....0..0..2
%e ..0..1..1....2..2..2....1..2..2....1..1..1....0..0..0....1..1..0....0..2..2
%Y Column 2 of A231302.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 07 2013