login
A231292
a(n) = Jacobsthal(n)^n, where Jacobsthal(n) = A001045(n), for n>=1.
2
1, 1, 27, 625, 161051, 85766121, 271818611107, 2724905250390625, 125015825667824393931, 21259046894411315872085401, 15087863296794400779633937999667, 41840013551409555494294964922119140625, 470091178834036922915254196307625156782873691
OFFSET
1,3
FORMULA
a(n) = (2^n - (-1)^n)^n / 3^n.
One-third the logarithmic derivative of A211893.
MATHEMATICA
Module[{nn=20}, #[[1]]^#[[2]]&/@Thread[{Rest[LinearRecurrence[{1, 2}, {0, 1}, nn+1]], Range[nn]}]] (* Harvey P. Dale, Jan 17 2022 *)
PROG
(PARI) {a(n)=(2^n-(-1)^n)^n/3^n}
for(n=1, 15, print1(a(n), ", "))
CROSSREFS
Sequence in context: A185883 A212670 A099753 * A046359 A223500 A060603
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 06 2013
STATUS
approved