login
A231227
T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
8
1, 2, 2, 3, 4, 3, 6, 8, 8, 6, 11, 17, 21, 17, 11, 22, 45, 54, 54, 45, 22, 43, 103, 185, 182, 185, 103, 43, 86, 264, 552, 812, 812, 552, 264, 86, 171, 676, 1799, 2962, 4298, 2962, 1799, 676, 171, 342, 1724, 5900, 12179, 19935, 19935, 12179, 5900, 1724, 342, 683, 4501
OFFSET
1,2
COMMENTS
Table starts
...1....2.....3......6.......11........22.........43.........86........171
...2....4.....8.....17.......45.......103........264........676.......1724
...3....8....21.....54......185.......552.......1799.......5900......19185
...6...17....54....182......812......2962......12179......50196.....205057
..11...45...185....812.....4298.....19935.....102113.....524113....2687777
..22..103...552...2962....19935....117178.....748665....4870988...31483476
..43..264..1799..12179...102113....748665....5930126...48317804..390225796
..86..676..5900..50196...524113...4870988...48317804..495739986.5038813008
.171.1724.19185.205057..2687777..31483476..390225796.5038813008
.342.4501.63834.864270.14197596.210326324.3267809753
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: [order 11]
k=3: [order 13]
k=4: [order 96]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0..0..0....0..0..0..0..1..1....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..1..1..0..0....0..0..0..0..1..1....0..0..1..1..0..0....0..0..1..1..0..0
..1..1..1..1..1..1....1..1..1..1..0..0....1..1..1..1..1..1....1..1..1..1..1..1
..1..1..1..1..1..1....1..1..1..1..0..0....1..1..1..1..1..1....1..1..1..1..1..1
..0..0..1..1..2..2....0..0..0..0..1..1....0..0..1..1..0..0....2..2..1..1..0..0
..0..0..0..2..2..2....0..0..0..0..1..1....0..0..0..0..0..0....2..2..2..0..0..0
..0..0..0..2..2..2....0..0..0..0..1..1....0..0..0..0..0..0....2..2..2..0..0..0
CROSSREFS
Column 1 is A005578
Sequence in context: A360999 A343299 A375659 * A231441 A284199 A284165
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 05 2013
STATUS
approved