%I #4 Nov 05 2013 07:20:16
%S 9,67,67,538,1413,538,4264,31665,31665,4264,33868,704428,2001156,
%T 704428,33868,268936,15698874,125862699,125862699,15698874,268936,
%U 2135636,349736292,7925306181,22370911245,7925306181,349736292,2135636,16959144
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..2 introduced in row major order
%C Table starts
%C .......9.........67............538...............4264.................33868
%C ......67.......1413..........31665.............704428..............15698874
%C .....538......31665........2001156..........125862699............7925306181
%C ....4264.....704428......125862699........22370911245.........3979620300917
%C ...33868...15698874.....7925306181......3979620300917......2000159147569783
%C ..268936..349736292...498915418541....707803712206189...1005095606724544160
%C .2135636.7791727354.31409217221246.125892415174551558.505085343218758535024
%H R. H. Hardin, <a href="/A231199/b231199.txt">Table of n, a(n) for n = 1..97</a>
%F Empirical for column k:
%F k=1: a(n) = 8*a(n-1) -4*a(n-3) +4*a(n-4) -12*a(n-5) -16*a(n-6)
%F k=2: [order 18]
%F k=3: [order 62]
%e Some solutions for n=1 k=4
%e ..0..1..2..2..1....0..0..1..2..0....0..1..1..2..2....0..0..0..1..0
%e ..0..1..0..1..2....2..0..0..0..2....0..1..0..0..0....1..1..2..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 05 2013