OFFSET
0,20
COMMENTS
If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 + 4) are zeros of q(n,x).
EXAMPLE
First 6 rows:
1
-1 .. -1 ... 1
-1 ... 1 ... 1
1 ... -1 .. -1 ... 1 ... 1
1 .... 0 .. -1 ... 0 ... 1
1 ... -1 .. -3 ... 2 ... 5 ... -2 ... -3 ... 1 ... 1
First 4 polynomials: 1, -1 - x + x^2, -1 + x + x^2, 1 - x - x^2 + x^3 + x^4.
MATHEMATICA
z = 60; p[n_, x_] := p[x] = Cyclotomic[n, x]; Table[p[n, x], {n, 0, z/4}]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> x - 1/x]]; Table[Expand[f1[n, x]], {n, 0, z/4}]
t = Flatten[Table[CoefficientList[f1[n, x], x], {n, 0, z/4}]]
CROSSREFS
KEYWORD
tabf,sign,easy
AUTHOR
Clark Kimberling, Nov 07 2013
STATUS
approved