login
A231137
T(n,k)=Number of (n+1)X(k+1) black-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
5
1, 2, 2, 6, 9, 6, 16, 40, 40, 16, 44, 182, 308, 182, 44, 120, 808, 2260, 2260, 808, 120, 328, 3688, 16812, 27171, 16812, 3688, 328, 896, 16368, 124644, 336004, 336004, 124644, 16368, 896, 2448, 74728, 924900, 4066129, 6794904, 4066129, 924900, 74728, 2448
OFFSET
1,2
COMMENTS
Table starts
..1...2.....6.....16......44.......120........328.........896..........2448
..2...9....40....182.....808......3688......16368.......74728........331648
..6..40...308...2260...16812....124644.....924900.....6862052......50913012
.16.182..2260..27171..336004...4066129...50257244...608468617....7520563372
.44.808.16812.336004.6794904.137063228.2766762720.55844298404.1127200291672
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2)
k=2: a(n) = 22*a(n-2) -36*a(n-4) +16*a(n-6)
k=3: [order 8]
k=4: [order 18, even terms]
k=5: [order 34]
k=6: [order 90, even terms]
EXAMPLE
Some solutions for n=2 k=4
..x..0..x..1..x....x..0..x..1..x....x..0..x..0..x....x..0..x..1..x
..2..x..0..x..1....1..x..0..x..2....1..x..2..x..0....2..x..0..x..2
..x..0..x..2..x....x..0..x..1..x....x..1..x..2..x....x..1..x..1..x
CROSSREFS
Column 1 is A002605
Column 3 is A231126
Column 5 is A231128
Column 7 is A231130
Sequence in context: A331988 A242978 A345308 * A371400 A188808 A021819
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 04 2013
STATUS
approved