This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231137 T(n,k)=Number of (n+1)X(k+1) black-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order 5
 1, 2, 2, 6, 9, 6, 16, 40, 40, 16, 44, 182, 308, 182, 44, 120, 808, 2260, 2260, 808, 120, 328, 3688, 16812, 27171, 16812, 3688, 328, 896, 16368, 124644, 336004, 336004, 124644, 16368, 896, 2448, 74728, 924900, 4066129, 6794904, 4066129, 924900, 74728, 2448 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Table starts ..1...2.....6.....16......44.......120........328.........896..........2448 ..2...9....40....182.....808......3688......16368.......74728........331648 ..6..40...308...2260...16812....124644.....924900.....6862052......50913012 .16.182..2260..27171..336004...4066129...50257244...608468617....7520563372 .44.808.16812.336004.6794904.137063228.2766762720.55844298404.1127200291672 LINKS R. H. Hardin, Table of n, a(n) for n = 1..312 FORMULA Empirical for column k: k=1: a(n) = 2*a(n-1) +2*a(n-2) k=2: a(n) = 22*a(n-2) -36*a(n-4) +16*a(n-6) k=3: [order 8] k=4: [order 18, even terms] k=5: [order 34] k=6: [order 90, even terms] EXAMPLE Some solutions for n=2 k=4 ..x..0..x..1..x....x..0..x..1..x....x..0..x..0..x....x..0..x..1..x ..2..x..0..x..1....1..x..0..x..2....1..x..2..x..0....2..x..0..x..2 ..x..0..x..2..x....x..0..x..1..x....x..1..x..2..x....x..1..x..1..x CROSSREFS Column 1 is A002605 Column 3 is A231126 Column 5 is A231128 Column 7 is A231130 Sequence in context: A169800 A094485 A242978 * A188808 A021819 A000021 Adjacent sequences:  A231134 A231135 A231136 * A231138 A231139 A231140 KEYWORD nonn,tabl AUTHOR R. H. Hardin, Nov 04 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 17:03 EDT 2019. Contains 324196 sequences. (Running on oeis4.)