login
Number of (n+1)X(6+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
1

%I #5 Aug 11 2014 22:45:54

%S 120,3584,124644,4150352,137063228,4614346288,151928497692,

%T 5118452297664,168507419403536,5677207375660208,186902346005124780,

%U 6296966415548143360,207305819737090195456,6984385124729232483872,229936709033952423239528

%N Number of (n+1)X(6+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Column 6 of A231131

%H R. H. Hardin, <a href="/A231129/b231129.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A231129/a231129.txt">Empirical recurrence of order 90</a>

%F Empirical recurrence of order 90 (see link above)

%e Some solutions for n=2

%e ..0..x..0..x..1..x..1....0..x..1..x..0..x..0....0..x..0..x..0..x..0

%e ..x..2..x..1..x..2..x....x..1..x..0..x..1..x....x..1..x..1..x..1..x

%e ..1..x..2..x..1..x..1....0..x..2..x..0..x..0....0..x..2..x..0..x..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 04 2013