login
A231069
Number of black square subarrays of (n+1)X(6+1) binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with upper left element zero
1
8, 42, 139, 748, 2379, 13785, 43004, 253150, 793041, 4669709, 14671984, 86434175, 271693559, 1601479258, 5034665244, 29682509736, 93325900298, 550249461287, 1730155635975, 10201324308311, 32076766175871, 189133666816468
OFFSET
1,1
COMMENTS
Column 6 of A231070
LINKS
FORMULA
Empirical: a(n) = 46*a(n-2) -873*a(n-4) +10049*a(n-6) -84447*a(n-8) +562572*a(n-10) -3067159*a(n-12) +13891260*a(n-14) -52935814*a(n-16) +172217299*a(n-18) -484689977*a(n-20) +1190134475*a(n-22) -2558652242*a(n-24) +4820557844*a(n-26) -7965409977*a(n-28) +11572562962*a(n-30) -14858863618*a(n-32) +16991999037*a(n-34) -17461801546*a(n-36) +16238944429*a(n-38) -13686724101*a(n-40) +10397239696*a(n-42) -7043263035*a(n-44) +4203452626*a(n-46) -2187172255*a(n-48) +984805610*a(n-50) -381851657*a(n-52) +127072644*a(n-54) -36179358*a(n-56) +8775147*a(n-58) -1797418*a(n-60) +304631*a(n-62) -40963*a(n-64) +4058*a(n-66) -260*a(n-68) +8*a(n-70)
EXAMPLE
Some solutions for n=4
..x..0..x..0..x..1..x....x..0..x..1..x..1..x....x..0..x..0..x..1..x
..1..x..1..x..1..x..0....1..x..0..x..0..x..0....1..x..1..x..1..x..0
..x..0..x..0..x..1..x....x..1..x..1..x..1..x....x..0..x..0..x..0..x
..0..x..1..x..0..x..0....0..x..1..x..0..x..1....0..x..0..x..0..x..1
..x..1..x..0..x..1..x....x..0..x..0..x..0..x....x..1..x..1..x..1..x
CROSSREFS
Sequence in context: A234860 A292059 A027903 * A319235 A341764 A256861
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 03 2013
STATUS
approved