login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of black square subarrays of (n+1)X(n+1) binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with upper left element zero
1

%I #5 Nov 03 2013 07:44:55

%S 1,3,11,89,685,13785,223270,10204445,367167586,37025661591,

%T 2960154980175,660415936461789,116764729695106769,

%U 57661136320504955250,22542682942448533813110,24616708332260554368059831

%N Number of black square subarrays of (n+1)X(n+1) binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with upper left element zero

%C Diagonal of A231070

%H R. H. Hardin, <a href="/A231066/b231066.txt">Table of n, a(n) for n = 1..18</a>

%e Some solutions for n=4

%e ..x..0..x..0..x....x..0..x..0..x....x..0..x..0..x....x..0..x..0..x

%e ..1..x..1..x..0....1..x..1..x..1....1..x..1..x..0....1..x..1..x..0

%e ..x..0..x..1..x....x..0..x..0..x....x..0..x..1..x....x..0..x..1..x

%e ..0..x..0..x..1....0..x..1..x..1....1..x..0..x..0....1..x..1..x..0

%e ..x..1..x..0..x....x..1..x..0..x....x..0..x..1..x....x..0..x..1..x

%K nonn

%O 1,2

%A _R. H. Hardin_, Nov 03 2013