login
A231013
Number of months after which it is not possible to have a date falling on the same day of the week, in the Julian calendar.
2
2, 4, 5, 7, 10, 12, 13, 16, 21, 24, 25, 30, 33, 36, 39, 42, 44, 47, 48, 50, 51, 53, 56, 59, 62, 65, 67, 70, 76, 79, 82, 84, 85, 88, 90, 93, 96, 97, 99, 102, 105, 107, 108, 111, 116, 119, 120, 122, 125, 128, 134, 136, 137, 139, 142, 144, 145, 148, 151, 153, 154, 156, 157, 162
OFFSET
1,1
COMMENTS
In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 336.
This is the complement of A231010.
LINKS
PROG
(PARI) m=[0, 3, 3, 6, 1, 4, 6, 2, 5, 0, 3, 5]; n=[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]; y=vector(336, i, (m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-!((i-1)%48)-!((i-2)%48))))%7); x=vector(336, i, n[((i-1)%12)+1]+!((i-2)%48)); for(p=0, 336, j=0; for(q=0, 336, if(y[(q%336)+1]==y[((q+p)%336)+1], j=1; break)); if(j==0, print1(p", ")))
CROSSREFS
Cf. A231008 (Gregorian calendar).
Sequence in context: A364132 A285251 A325124 * A231008 A092311 A335365
KEYWORD
nonn,easy
AUTHOR
Aswini Vaidyanathan, Nov 02 2013
STATUS
approved