login
A230986
Number of white square subarrays of (n+1)X(5+1) binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with upper left element zero
2
5, 15, 59, 191, 685, 2379, 8357, 29493, 103842, 366761, 1295168, 4575191, 16168709, 57141283, 201968011, 713913289, 2523592759, 8920910386, 31535904373, 111482428201, 394104351253, 1393214372302, 4925225989915, 17411465057517
OFFSET
1,1
COMMENTS
Column 5 of A230989
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +14*a(n-2) -32*a(n-3) -104*a(n-4) +154*a(n-5) +508*a(n-6) -484*a(n-7) -1726*a(n-8) +1093*a(n-9) +4145*a(n-10) -1749*a(n-11) -7333*a(n-12) +2022*a(n-13) +9991*a(n-14) -1827*a(n-15) -10876*a(n-16) +1558*a(n-17) +9630*a(n-18) -1406*a(n-19) -6891*a(n-20) +1141*a(n-21) +3895*a(n-22) -694*a(n-23) -1685*a(n-24) +290*a(n-25) +536*a(n-26) -79*a(n-27) -118*a(n-28) +13*a(n-29) +16*a(n-30) -a(n-31) -a(n-32)
EXAMPLE
Some solutions for n=6
..0..x..0..x..0..x....0..x..0..x..1..x....0..x..0..x..0..x....0..x..1..x..1..x
..x..1..x..0..x..1....x..1..x..0..x..1....x..1..x..1..x..1....x..1..x..0..x..1
..0..x..1..x..1..x....1..x..1..x..0..x....0..x..0..x..0..x....0..x..0..x..0..x
..x..0..x..0..x..0....x..0..x..1..x..1....x..1..x..1..x..0....x..1..x..1..x..0
..1..x..1..x..1..x....1..x..1..x..0..x....1..x..0..x..1..x....1..x..1..x..1..x
..x..0..x..1..x..1....x..1..x..0..x..1....x..0..x..1..x..0....x..0..x..0..x..0
..1..x..0..x..0..x....0..x..0..x..1..x....1..x..0..x..0..x....1..x..1..x..1..x
CROSSREFS
Sequence in context: A149591 A149592 A149593 * A149594 A149595 A149596
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 02 2013
STATUS
approved