login
Boustrophedon transform of partition numbers A000009.
4

%I #10 Oct 10 2019 10:59:14

%S 1,2,4,10,29,94,364,1621,8255,47277,300962,2107479,16099922,133243363,

%T 1187555333,11340314638,115511502857,1250127378307,14325404633040,

%U 173276880401035,2206229765086251,29495119298584886,413097874985119467,6048684327982905454

%N Boustrophedon transform of partition numbers A000009.

%H Reinhard Zumkeller, <a href="/A230957/b230957.txt">Table of n, a(n) for n = 0..150</a>

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>

%H J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>

%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>

%F a(n) = sum(A109449(n,k)*A000009(k): k=0..n).

%t T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}];

%t a[n_] := Sum[T[n, k] PartitionsQ[k], {k, 0, n}];

%t Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Jul 23 2019 *)

%o (Haskell)

%o a230957 n = sum $ zipWith (*) (a109449_row n) a000009_list

%Y Cf. A000751.

%K nonn

%O 0,2

%A _Reinhard Zumkeller_, Nov 03 2013