login
Boustrophedon transform of nonprimes.
7

%I #19 Jun 12 2022 14:05:57

%S 1,5,15,40,114,371,1422,6334,32238,184655,1175454,8231308,62882262,

%T 520416569,4638303786,44292536061,451160065069,4882696090609,

%U 55951575728713,676777708544967,8617001415386120,115200823068725262,1613460678695102980,23624702309844184487

%N Boustrophedon transform of nonprimes.

%H Reinhard Zumkeller, <a href="/A230955/b230955.txt">Table of n, a(n) for n = 0..400</a>

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>

%H J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>

%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>

%F a(n) = Sum_{k=0..n} A109449(n,k)*A018252(k+1).

%t cc = Select[Range[max = 40], !PrimeQ[#]&]; t[n_, 0] := cc[[n+1]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, cc // Length, 0] (* _Jean-François Alcover_, Feb 12 2016 *)

%o (Haskell)

%o a230955 n = sum $ zipWith (*) (a109449_row n) a018252_list

%o (Python)

%o from itertools import accumulate, count, islice

%o from sympy import composite

%o def A230955_gen(): # generator of terms

%o yield 1

%o blist = (1,)

%o for i in count(1):

%o yield (blist := tuple(accumulate(reversed(blist),initial=composite(i))))[-1]

%o A230955_list = list(islice(A230955_gen(),40)) # _Chai Wah Wu_, Jun 12 2022

%Y Cf. A230954, A000747, A000732, A230953.

%K nonn

%O 0,2

%A _Reinhard Zumkeller_, Nov 03 2013